Удк 681.5.17.09 Approximate Solution to G – Renewal Equation with Underlying Weibull Distribution
نویسندگان
چکیده
An important characteristic of the grenewal process, and of great practical interest, is the grenewal equation, which represents the expected cumulative number of recurrent events as a function of time. The problem is that the grenewal equation does not have a closed form solution, unless the underlying event times are exponentially distributed. The Monte Carlo solution [10], although exhaustive, is computationally demanding. This paper offers a simple-toimplement (in an Excel spreadsheet) approximate solution, when the underlying failuretime distribution is Weibull. The accuracy of the proposed solution is in the neighborhood of 2%, when compared to the respective Monte Carlo solution. Based on the proposed solution, we also consider an estimation procedure of the grenewal process parameters.
منابع مشابه
Approximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کاملAnalytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method
In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...
متن کاملNonresonant Excitation of the Forced Duffing Equation
We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...
متن کاملOn Burr III-Inverse Weibull Distribution with COVID-19 Applications
We introduce a flexible lifetime distribution called Burr III-Inverse Weibull (BIII-IW). The new proposed distribution has well-known sub-models. The BIII-IW density function includes exponential, left-skewed, right-skewed and symmetrical shapes. The BIII-IW model’s failure rate can be monotone and non-monotone depending on the parameter values. To show the importance of the BIII-IW distributio...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کامل